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ON THE STABILITY OF A STATIONARY FRONT OF AN EXOTHERMIC REACTION 
IN CYLINDRICAL SAMPLES* 

P.A. AVDEYEV 

The problem of the stability of a planar combustion wave front which 
propagates in a thermally isolated porous cylinder is considered. A 
model system of the theory of combustionisused which describes an 
exothermic reaction in a porous medium saturated with gas. The 
Arrhenius dependence of the reaction rate is replaced by a piecewise- 
constant dependence. In this case it is possible to find an analytical 
solution for the temperature distribution and the distribution of the 
reagent concentration in the stationary wave. Unlike the results 
obtained using the approach in /l, 2/, the thermal and diffusion fluxes 
are continuous everywhere in the case of the solution which is constructed. 
Investigation of the stability of the solution leads to results which are 
similar to the approximate results in /l, 2,' but the details concerning 
loss of stability exhibit a qualitative difference associated with the 
occurrence of folding in the neighbourhood of the neutral hypersurface 
at a Lewis number L<i which accounts for the possible appearance of 
vortex waves in a sample of circular cross-section /3, 4/. 

When O< L<1 on the neutral surface, the boundary of stability of a stationary combustion 
front in the cylindrical sample is determined from data on the vibrational frequency spectrum 
of a free membrane which is identical in shape with the cross-section of the cylindrical 
sample. This boundary depends on the shape of the cross-section of the sample but is always 
enclosed between the stability boundary of the wave in unbounded space and the stability 
boundary in the corresponding one-dimensional problem. Loss of stability occurs when a pair 
of complex conjungate eigenvalues intersect the imaginary axis. When L>i, lossofstability 
occurs when a real eigenvalue intersects the imaginary axis. The region of stability for a 
cylinder of any cross-sectional form is wider than the stability region which corresponds to 
a wave propagating in an unbounded space filled with asubstance. The critical indices of the 
stability boundary in the neighbourhood of Lz.1 are determined together with the critical 
dimensions for samples of square and circular cross-section. 

The thermal conductivity and diffusion equations in a coordinate system which moves at 
constant velocity U along the generatrix of a cylinder have the form 

Here zr, zp, za are Cartesian coordinates, Q is the reaction rate, n is the concentration of 
the reagent, 3 and a are the coefficient of diffusion and the thermal conductivity, B is a 
pre-exponential factor, To is the initial temperature and T1 is the combustion temperature. 
The remaining notation is generally accepted /5/. The quantities L, 0 and Q (O<q<O) are 
the dimensionless parameters of the problem which correspond to the coefficient of diffusion, 
the combustion temperature and the amount of heat evolved. The dependent parameter C = g/8 
is introduced. 
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In the problem under consideration , as in /6/, the krrhenius dependence of the reaction 
rate on temperature in (1) is replaced by the model dependence (h is the Heaviside function) 

f(X,9)= h(e - X) (3) 
For Eqs. (1) in the case of (2) or (3), the initial-boundary value problem (,n is the 

cylinder and v is the external normal, to the boundary of the cylinder) becomes 

x1%=0= Yo (5, g!, s), y I- = X0(-% ih 4 
ax I BY 
av on =av an= I 0 

Let U be identical with the velocity of propagationofthe combustion wave. The profile 
of this wave is then determined by the stationary solution of (1) with the boundary conditions 

S=-co* x=Y=o,s=+oo, X==Y=C 

The stationary problem leads to the system 

.$==z-x, L+z--Y, -$-=nuf(x,e) 
s=--00, x~Y=z~o, s=foo, X=Y=Z=C 

(4) 

The second of Eqs.(4) is obtained by subtracting the second equation of (1) from the 
first and integrating with respect to s taking account of the boundary conditions. The velocity 
of the wave is determined by the dependence found by solving (4) which relates A, L, C, and 
e. In the case of (31, the solution has the form 

X = exp (ps). Y = p (a + p) A+ exp fps), s < s* 

x=c - exp (% - aI, Y = c - exp ((s* - s)/L), s > s* 

s,=p-11n e, s~=s, + hype), ss==8* + fin [c~~/(i + L~)-IJ 

c = (1 f p) e, p = ((1 + 4Lhyfs - I)/ 

(5) 

Here q is the width of the thermal wave and Ss is the width of the conversion wave. By 
means of the transformation X =9X', Y = BY', Bqs.(l) can be reduced to a form which only 
contains the parameter L% while the boundary conditions of the stationary problem (4) only 
contain the parameter Cfo or the parameter p which is associated with it by virtue of (5). 
The stationary problem therefore only depends on A and L or on p and L. we shall sub- 
sequently take p and L as the fundamental parameters of the problem. As L-+0, the parameter 
p transforms into A. 

The asymptotic behaviour of the stationary solution when s-tf CQ in the case of (2) has 
the same form in the case of (3). 

Let us now investigate the stability of the solution (5) within the framework of linear 
theory. The eigenvalue problem has the form 

where 6WaX and 8blaY are calculated on the solution (5) 

cmiax = - (1 + p) 6 (s -S*), OavaY = Ah (s* - s) 

By applying the method of the separation of variables to (6) 

zf. = E Is) @? @> St), v = n (s) W (I, !J) 

we obtain two problems: 

We note that (9) is the problem of the vibration of a free membrane whichhasadenumerable 
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number of non-negative solutions R (IL0 = 0) which are ordered in magnitude and to each of 
which several eigenfunctions w may correspond. The characteristic numbers, h, are determined 
for each ,u, from (8) while the eigenfunctions (6), corresponding to the given values of i, 
are found using formula (7). In order to determine the boundary of stability of a cylinder 
with a cross-section 51 one merely needs to know the spectrum ,u~(&?), n = o,f,...,by which the 
shape n is not uniquely determined. The solution of the stability problem involves the 
determination of the boundary of stability of the stationary wave in the space of the par- 
ametersL,p,(p,} from the condition of intersection of the imaginary axis by the right-most 
eigenvalue. 

Problem (8) depends on problem (9) only through the parameter ft and (8) can therefore 
be considered as a single parameter problem in p on the eigenvalues h. When p = 0, this is 
the problem of the one-dimensional stability of a stationary wave. Problem (8) may also be 
considered as a problem of the stability of a stationary wave which propagates in an unbounded 
space filled with a substance. In fact, by applying a Fourier transform with respect to .z 
and y to (6) and introducing the notation (V and V are the Fourier transforms of the functions 
% u) 

j = u, 7) = v, : = aUL%-, p = Nias, p = kxZ -i- kvt 

we obtain (8). Moreover, the perturbations of the basic solution (5) have the form 

Hence, yet another parameter p appears in problem (8) in addition to the basic parameters 
of the problem L and p. In the space of L,p, p (or L, A, p), where L 20, ~20, p>O(h>O), 
the condition for the stability of the stationary wave determines the neutral surface n = 

A(P7 L) along which the stability boundary will be determined. In the region where A> 
n(p,L), h are the eigenvalues in the right-hand half-plane. Sections of the surface A = 
A(p,L) with the planes L = 0. IN, where N = 0,1,..., 6 is the number of the neutral curve 
are shown in Fig.1. When L> I, the cross-sections of the surface p(p,L) which corresponds 
to A&, L) by virtue of (5) are shown in Fig.2 for p = N, where N = 0,2,4, 

The determination of the neutral curve A = A&L) when L = 0 requires that certain 
changes are made in the formulation of the problem since the order of Eqs.(l) is changed when 
this is done, However, as a study of this case has shown, the equation for determining the 
neutral curve when L I 0 is identical to the equation which is obtained from the general 
case when L-+0 and we shall therefore subsequently assume that L>O, 

When O<L<1, all the neutral curves intially decrease from the value A*(L) to R,(L) 
(when p = p*(L)) and then increase without limit (Fig.1). When the neutral surface is inter- 
sected in the plane of hr a pair of complex conjugate eigenvalues intersect the imaginary axis 
and the values h = ficl, determine the function on the neutral surface o == o(k,L), where 

k = I/%& Profiles of this dependence when L = O&v, where N -2 0,1,3,5 are presented in 
Fig.3. The last of these profiles is to be considered as the limiting profile as L-t1 -0. 
The profiles are readily distinguished by the values of o at k === 0. The dependence o*(L) 
decreases monotonically as L increases (Fig.4) and determines the frequency of the auto- 
vibrations when there is loss of stability in the one-dimensional problem. The value of L1* (L) 
determines the stability boundary of a stationary wave which propagates in an unbounded medium 
while A*(Z,) determines the boundary of one-dimensional stability of a stationary wave. 

Fig.1 Fig.2 
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Fig.3 Fig.4 

In the case of a cyiinder of cross-section g the boundary of stability is determined 
from the relationship 

An(L) = min, A (L, L) (18) 

and is always included between A,(L) and L%*(L). Using (5), these same boundaries P* (L) 
and p* (L) may be considered in the p,L plane. The upper and lower stability bounds almost 
merge (Fiq.2) and have the asymptotic forms p* z 5.46/(1 -L) - 2.7, p,z5.,33/(1 -L) - 2.6 as 
L-+1 -0. 

The exact values of the coefficients for negative moduli of (i-L) are equal to 2(i+1/9) 
and 16/3 respectively. The lower stability boundary A.(L) has a minimum value .I..= 5.790 at 
L z 0.0137. The value of n, at which a minimum is attained in (lo), determines the most 
"dangerous" perturbation modes, the half-wave lengths n/k and the phase and group velocities 
of these perturbations up,,(L)= oik and ~l(r (L) = doldk When k = k, (L), k, = 1/E. In the 
calculation of these quantities in the case of a Qave which propagates in an unbounded space, 
it follows that one should put k=k,(L) and k, = 1/p*(L) (Fig.4). 

When L>l, loss of stability occurs where the imaginary axis is intersected by a real 
eigenvalue h and, since A(p, L) increases as P increases, the minimum in (10) is attained 
when n = 1, that is, AQ (L) FF A(pl,L). Here the value PLO = 0 has not been taken into 
account since, here, neutral perturbations which solely lead to a displacement of the wave 
front along the s-axis (see /6/) correspond to the eigenvalue h = 0. This limits of 
stability in the variables L and p when PL1 = 2.4 are presented in Fig.2. When P > P (lh 0 I 
the stationary wave is unstable. 

Hence, when L> 1, the stability bpundary is represented by a surface in the space of 
the parameters L,p, and PL1 and does not depend on the values of the other p,,. In the case, 
the perturbation of the main solution (5) is 

(::)=Re(:) exp (AT) WI (5, Y) 

where E(s) and q(s) are solutions of problem (8) when h = 0 and P = PI. The stability 
boundary of a stationary wave which propagates in an unbounded space &(L)=p(+O,L) has 
the following asymptotic forms: p+ z l/(L - I)-_.5 as L+ 1 + 0 and p+ z l/L’ as L-+00 
(Fig.2). when P < ps (L) I the wave is stable. We note that, in the corresponding one- 
dimensional problem when L> 1, solution (5) is stable for any p (it is, of course, necessary 
to factorize the perturbations with regard to neutral shifts). 

Let us now consider the solution of problem (8). The eigenvalues of problem (8) form 
complex conjugate pairs and the constraint Imli>O is subsequently assumed to apply every- 
where. We shall denote the solutions of problem (8) by cp =(g,n, 6,P)r (T is the symbol of 
transposition). By analogy with (6), we determine two sets of solutions of (8): (p- = (90-9 
~1-,~,-,~~~) and cp+ = (cp,',cp,+,cp,',cp,')which are designated by their asymptotic forms 

s-+-m, qk- - (A, Pk (1 + Pk) - @ + Ph APrT 

Pk’ (I + Pk) - Pk @ + dJT exp (wh 

%a- - (19 0, Pm9 QT exP (Pms) 

s+ + O”, (pk+ - (0, 1, 0, qk)= exp bks), 

%n+ - (1, 0 PmW exp (Pm4 

(12) 
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(k = 0,1; TV. = 2,3) 

po,* = (-1 T [1 + 4L (A + h i- Lp)l’j~)/(zL) 

pz.3 = --‘i, $: (‘I, + h + p)“, Qc.1 = PO.1 in-;” 

(the branch of the square root with a cut along the positive part of the real semi-axis; 

f'-1 = i). Expressions (12) were obtained by solving problem (8) with the formal replacement 
of 8.DlaX and &Way by the corresponding constant values as f 0~). Formulae (12) hold in the 
case when the characteristic equations have non-multiple roots. 

The following conditions, which are obtained from (81, enable one, using the specified 
asymptotic forms (12)‘ to continueq- and cp+ on the whole of the s-axis: 

[El = rq1 = 0, 151 = [LPI = - (1 + PI Er (13) 

5, = 5 (s*), VI = f (s* i 0) - f (s* - 0) 

The two sets cp- and up+ are linearly dependent and, therefore, 

f@- = s (h)rp+ (14) 

where S(h)is a constant 4 x 4 matrix. The problem of determining the eigenvalues h is 
formulated with the help of conditions on S or on the matrix P which is its inverse. 

In studying the question of the possible loss of stability of solution (S), we shall 
confine ourselves to investigating the possibility of the appearance of eigenvalues in the 
right-hand half-plane Reh> 0 and, since they were previously confined to the upper half- 
plane, we shall subsequently assume a value of h which belongs to the first quadrant. In 
the first quadrant, rp;, (p%-' are bounded as s-+-co. Hence, the eigenfunctions cp must be 
a linear combination of both *P;, rp; and rp@', (p3+_ On the other hand, it follows from (14) 
that 

qj-=SOj~O+ + SljCpl* + S2jqC4+ + SQCpS+, j= 1~2 

and the combination 9 = clcp,- + c##,- must not contain VI+ and (Pi+. In order for this to be so, 
it is necessary that the rows (sncpl+, Sp#at) and (S,,cp,+, &,I@,+) should be proportional, that 
is, 

Eq.(15) served to determine the eigenvalues h which lieinthe firstquadrant. Calculations 
of the matrix S using (12) and (13) yield 

81, = I& - Qo) [P, (1 fP*) - 0 i CL)1 - A(1 +P)lLl(fJ, - (18) 
IO)_'exp [(Pl - 41) $*I 

S,% = (1 + P) fL (Qo - gX1 exp f(p, - tlJ s,l 

&1 = A (Pi - PS -p - 1) (pz - p$'exr~ I(P, -P*) se1 
ST22 = (Pz - Ps -P - 1) (Pz - P3Y 

Substitution of (16) into (15) leads to the equation for 

(PI - Qo) (Pz - P3 - P - $1 h (f + PI) - (h i- p)f - A (Z + 
PI (Pa - P&L = 0 

which, by making use of the identity pl(l + PJ-((h + p) = (pl --pe)(pl -p& can be abbreviated 
to (pr -pa), (pl - po) and we finally obtain 

6. (h, p, p, t) E (~1 - pa) (PZ - Ps) + (1 4 P) (Ps + Qo d- l/L) = 0 (17) 

AsL+O, Eq.(l7) yields 

(A + 2h) 11 + 4 (h + p)l”’ = 2?k (A - 1) + A - 4cL iI@ 

By squaring (181, we obtain 

ha _t ala* + a,a -t- a, = 0 (W 
a, = V,A - ‘IdA” -I- p, a, = ‘f2A -I- (213 - 1) p, a8 = 

(‘I& + ‘i,Az) 1-1 - pa 

The eigenvalues b, lying in the first quadrant , are the roots of Eq.(19) which satisfy 
Eq. (18). We shall investigate (19) with the aid of the Hurwitz criterion. Lines specified 
by the equations 

a, = 0, slaa -a, = 0, sa (UlUa - UJ = 0 

subdivide the plane of the parameters A and p into regions with a different number of roots 
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of Eq.(19) in the right-hand half-plane, h. In the case of the reqions 

O<h<o--l, 5- 1 < A< 215 + 3 + 5, 215 + 3 j- 
OdA 

OJ = (1 + +y, A > 0, p 2 0) 

the roots in the right-hand half-plane, h, are respectively: one real root, no roots, a pair 
of complex roots. In the latter case, it is only the root with Imh> 0 which is of interest 
because Eq.(18) was obtained for the first quadrant. 

It can be shown that the real root does not satisfy V&1.(18) while a root from the complex 
conjugate pair does satisfy it. Problem (8) also has as a solution the root which is the 
complex conjugate of that found. Intersection of the imaginary axis by the pair of roots 
under consideration is associated with loss of stability. For large values of pr the boundary 
of stability 

A (p) = 3 + (3 + 4p) (1 -I- 4pp 
tends asymptotically to the parabola 4~ = (A -3)'-5. The roots of Eq.(19) are readily 
calculated for the points (A,p) of curve (20). One of them is h = --a, and, therefore, 
the pair of other roots we have 

h = fiw, 0 = ‘i, (1 + 45 + Flu* f 2a3'f* 

5 = (1 + 4#*, p = k* 

A numerical investigation was carried out for values of O<L<1. The roots o and p 

(20) 

for 

were determined as a function of the parameters p=kP,L from the equation ZLA(io,p, a, L) = 0 
using Newton's method. The profiles of these functions for fixed values of L are shown in 
Figs.1 and 3. 

When L=l, Eq.(171 has the roots h= -P.S.= -P-V, which do not lie in the first 
quadrant and solution (5) is therefore stable. 

When L>1, the boundary of stability is calculated in the following manner. In Eq.(l7), 
we put h=O. Rearrangement of the Parts of the equation and then taking its square leads to 
an equation which is quadratic in p 

Qc$ -I- QIP + 0, = 0 w 
Q,, = 2fl - L-L*)- 8L*fi + 2LfL - If o + 2(L - t)r+ %Lor 

Q1 = I(l - L) - 2&T+ 2 (L - 4Lp - 2) rf- 2(l + L)m 

Qn = -8Lp- 8L (2 -L I_ 2La) pa; r = (1 i_ 4L8#' 

When k=O, this equation is identically satisfied for any p and L. Actaully, it follows 
from Eq.(17) that h=O, when p=O, is the eigenvalue for any L,p. As in /6/, this is 
associated with the existence of a single parameter family of solutions of Eqs.(4) which are 
obtained from (5) by a shift along s. The neutral hypersurface p=p&L) is obtained as 
the solution of Eq.(Zl) with a plus sign in front of the radical while the other value is 
negative. The eigenfunction cp= S,~,--SspL(po- which corresponds to h=O defines E(s) and n(s) 
in (11). The limiting profile p+(L)-p(fO,L) can be calculated if (21) is divided by p and 
one passes to the limit, p-$0. We then obtain 

p.(L) = (--2.U + 3L+ 1 + [(2L - 1)(2L3 - 5L‘J f 8L - 1)1"') x [4L (L - 1)1-l 

The solution which has been found was subjected to a numerical check. 
Let us now consider problem (9). We shall make use of Weil's formulaforthe spectrum /7/ 

h = 4n 1 S2 I-%, n-+m cm 

(here, (Q 1 is the cross-sectional area of the cylinder in dimensionless coordinates /I/). 
If the contour of B is deformed such that the normals Y are only slightly changed, then the 
spectrum {pL,} is only slightly changed. If, however, the normals are not close when the 
contours Q are close, the points of the spectrum may be moved by a finite amount. A sample 
of the same cross-sectional area as the initial sample and with a similar but very broken 
boundary can be prepared and, by virtue of the finite change in p,,this can lead to a finite 
changeinthe boundary of stability A,(L) (see /lo/). At the same time, by virtue of (221, 
An(L) is salely dependent on a finite number of p* with small numbers. 

If pl> p*(L) (Fig.l), then An(L) = A* (L) and a loss of stability when O<L<i occurs 

as in the one-dimensional problem. In the remaining cases, it follows that one should use 
formula (10) to calculate As(L), only taking the finite part of the spectrum into consider- 
ationforwhich A&, L)< A*(L). The condition p,(G) = p*(L) when OgL<i and the 
corresponding cross-section of the cylinder from the family of such cross-sections on which 
it is satisfied will be referred to as the critical cross-section. All cross-sections of 
smaller size than the critical cross-sections belonging to the family have one and the same 
boundary of stability An(L)= A*(L) and loss of stability occurs as in the one-dimensional 

problem. In the case of a square with a side of length, l,= n/l/r*) (Fig.4), the cross- 
section will be the critical cross-sectionwhile,inthecase of a circle, the critical radius 



R e zz 0,5861 1, (L). 
When L>t, if y<p,(L), the stationary wave is stable irrespective of the shape of 

the cylinder. When P> P* (L), we determine the critical size of the square as l? =- 

siliy* (L, P). where p*(L,p) is a transformation of the formula for the neutral hypersurface 
p = p(p,L). For a specified L and p)p*(L), a stationary wave in a cylinder of square cross- 
section with a length of a side of the square 1( I, is stable. When 1 = I, there is a loss 
of stability and, when there is a "short" perturbation, the solution corresponding to this 
instability is a stationary wave which is now inhomogeneous with respect to the variables 5 
and y. 

The author thanks G.G. Chernyi for discussing the results. 
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ON THE THEORY OF THE FILTRATION OF A LIQUID IN A POROUS MEDIUM UNDER BULK 
HEATING BY A HIGH-FREQUENCY ELECTRO~GNETIC FIELD* 

XUONG NGOC HAI, A.G. KDTDSHHV and R.I. NIGMATULIN 

The process of the filtration and warming up of an extremely viscous 
liquid {bitumen) in a porous medium where there is a bulk thermal source 
due to the absorption of energy from a high-frequency electromagnetic 
field fhfemf) is investigated. This problem is associated with the 
analysis of bituminous oils /l/, the filtration of which is only realized 
in practiceafter a preliminary heating of the reservoir with the help 
of a hfemf, for example /2-5/. 

It is assumed that the bitument is initially either in the liquid (mobile) or solid 
(immobile) state. Undertheaction of the bulk thermal source, the bitumen is heated, where- 
upon it melts, expands, flows, and moves with respect to the immobile, solid, porous skeleton 
of the rock under the pressure differential which is created. A closed system of differential 
equations is obtained and fundamental dimensionless similarity criteria are established which 
characterize the above-mentioned processes. The different types of stationary or limiting 
solutions which are realized during stationary or sufficiently lengthy heating of the medium 
are studied. When they exist, these solutions may be used to estimate the effectiveness of 
the actual process (to estimate the limiting length of the fusion zone, the extent of heating 
of the liquid bitumen and the characteristic time required for the process to attain a 
stationary state, etc., for example) and as tests to check the correctness of the various 
approximate and numerical methods for solving the resulting system of non-linear differential 
equations. 
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